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CHAPTE®" 1

INTRODUCTION

This present work is nart of a study of the behavicr of
high-strength concrete under monotonic biaxial compressive loading.

A model of concrete, consisting of a square mortar plate with nine
coarse aggregate circular inclusions (see Fig. 2.1), is analyzed
using the Finite Element Method. The analytical results are then
compared with results of experimental tests of the same model.

The analysis takes into account the nonlinear behavior of the
mortar using the constitutive equations proposed in Ref. 1. These
constitutive equations have proved adequate for the prediction of
the behavior of concrete under biaxial states of stress.

The significance of the bond between the coarse aggregate and
the mortar is also studied using an interface element developed in
this work. Relative displacement of the two materials occurs if the
strength of the bond is exceeded.

Chapter 2 gives a brief account of the behavior of high-
strength concrete and presents a comparison with normal-strength con-
crete. The properties of the materials used in the analysis are also
presented. The constitutive equations used for the mortar are
described in detail in Chapter 3 and the linear and nonlinear finite
element analysis of the concrete model are developed in Chapter 4.
Chapter 5 shows the modeling of the interface between the mortar and

1
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the coarse aggregate and the bond properties between the two mater-
ials. Chapter 6 gives the analytical results and compares them with
experimental ones. Finally, some conclusions about the important
factors affecting the stiffness and strength of the concrete model

are listed in Chapter 7.




CHAPTER 2

HIGH-STRENGTH CONCRETE

2.1 Introduction

The concrete model shown in Fig. 2.1 was first proposed in
Ref. 2 for the study of the behavior of normal-strength concrete
subjected to biaxial loading. In the present work, the same model
is used to study the behavior of high-strength concrete under biaxial
loads. Thus, this chapter gives a brief presentation of applications
and properties of high-strength concrete and summarizes the most
important differences in behavior between high-strength concrete and
normal-strength concrete. The properties of the component materials

in the concrete model are also presented.

2.2 Applications of High-Strength Concrete

In recent years, efforts have been made to improve the com-
pressive strength of concrete. Nowadays, high-strength concrete is
becoming increasingly common. Among other applications, it has been
used in high-rise buildings where oversized columns can be avoided
in the lower floors, or in prestressed flexural members permitting
larger values of span-to-depth ratio. It also has great potential
of use in structures in which the concrete is subjected to a biaxial

state of stress such as large shells, containment vessels and tunnels.
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Fig. 2.1 The concrete model
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2.3 Properties of High-Strength Concrete

2.3.1 Uniaxial Compressive Strength. Although there is noweil

defined boundary  between normal-strength and high-strength con-
crete, some authors (see Ref. 3) classify arbitrarily concrete with

a specified cylinder compressive strength of at least 6,000 psi as
being high-strength concrete. Concretes with specified cylinder
compressive strength in the range of 8,000 to 10,000 psi have been
used successfully with conventional technology and materials but with
careful selection, proporticning and quality control. In this study,
the uniaxial compressive strength of the concrete model ranged between
6,000 and 8,000 psi.

2.3.2 Stress-Strain Relations. Plain concrete has some

amount of ductility. This ductility, however, decreases with increas-
ing concrete strength. The stress-strain relation up to ultimate
strength becomes almost a straight 1ine as the concrete strength
increases (see Fig. 2.2 and Ref. 3). Note that there is a descending
branch in each curve after the maximum stress has been reached. Also,
the maximum strain at failure in compression is lower at higher con-
crete strengths. The maximum ultimate strain may be below 0.003 for
higher-strength concretes. As it may be seen in Fig. 2.2, the modulus
of elasticity is greater for higher strength concrete.

2.3.3 Microcracking. The differences in behavior between
high-strength and normal-strength concrete as shown in Fig. 2.2 may
be explained by differences in microcracking. For higher-strength

concretes there is less cracking at the interface between the aggregate
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and the mortar than for lower-strength concretes and the stress-
strength ratio at which microcracks begin to form continuous crack
patterns is higher. Therefore, the stress-strain curve is steeper
and closely linear up to a higher stress-strength ratio (see Ref. 4),
and the number of continuous crack paths is smaller for higher-strength
concrete resulting in a decrease in the redundancy present in the
material. This is an explanation for its lack of ductility.

2.3.4 Failure Mode. High-strength concrete behaves more
like a homogenous material than normal-strength concrete and therefore
their failure modes in uniaxial compression are different. The frac-
ture surface of normal-strength concrete generally follows the con-
tour of the coarse aggregate surface in inclined planes forming a
cone of rupture. In high-strength concrete, failure occurs in a plane
parallel to the applied load and passing through the aggregate and

the mortar (see Ref. 4).

i - T T - —————




2.4 Component Materials Used in the Concrete Model

Typical stress-strain curves for the mortar and the coarse
aggregate used in the concrete model are shown in Fig. 2.3. As it
may be seen, the coarse aggregate behaves almost Tinearly up to
ultimate strength and the mortar shows some nonlinearities for loads
higher than approximately 40 percent of ultimate strength. Thus,
in this study, the coarse aggregate will be assumed to be elastic and
the nonlinear behavior of mortar will be taken into account.

The coarse aggregate and the mortar used in this study were
obtained, respectively, from limestone rock and from a mix of natural
sand and type I cement (w/c = 0.35, s/c = 2.0). The elastic proper-
ties of the two materials obtained from the average of three tests

on cylinder specimens are presented in Table 2.1.

TABLE 2.1 Elastic Properties of the Mortar and the Coarse Aggregate

Material Coarse ,
Property Aggregate Mortar
Compressive
Strength (psi) 12,850 10,970
Tensile
Strength (psi) --- 1,029
) Modulus of 6 6
Elasticity (psi) 4.49 x 10 6.74 x 10
( Poisson's
Ratio 0.058 0.25
‘ 1 ]
L
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CHAPTER 3
DESCRIPTION OF A CONSTITUTIVE MODEL

3.1 Introduction

The behavior of the coarse aggregate and the mortar under
short-term monothonic compression was discussed in detail in Chapter 2
In uniaxial compression the stress-strain curve for the mortar may be
assumed linear for levels of load up to 40-50 percent of ultimate
strength. Beyond this point, inelastic behavior is clearly obtained
and must be considered in the analysis.

In this chapter a model is presented applicable to the descrip-
tion of the behavior of the mortar under multiaxial states of stress.
The model parameters are estimated from experimental results. As
outlined below, the development of the model follows the formalism
of the classical theory of plasticity. The model was first proposed

in Ref. 1 in which details may be found. '

3.2 Description of the Model

Following the theory of plasticity, the increment of strain

d is taken to be the sum of an increment of strain resulting from

elastic behavior de?i and an increment of stiain resulting from inel-

p i

astic (plastic)behavior deij’

de,. = deS, + de (3.1)
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Assuming that the elasticity of the material is isotropic, the

e
elastic increment of strain d Eij is given by:

e
de.. = C

i ijke 9o (3.2)

where Ci?kg is the isotropic elastic compliance tensor and is given

by:

e 1.1 11
Cijka '[25 Sik S5t Tx - 78 ) Sij ‘Skz} (3.3)

(Indicial notation is conveniently used. Indices assume the values

1, 2, 3. The Kronecker delta 6ij is defined as Gij 0, ifi#]
and 5ij = 1, if i = j). K and G are the eiastic bulk and shear
moduli defined as:
K = E (3.4)
3(1-20) :
_ £
G = 2 (1 + v (3.5)

E and v are the Young's moduius and the Poisson's ratio respectively.
An alternative form of Eq. (3.2) is:
dSs.,.

e ij
de ., = (3.6a)
W 2 G

!
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e
def = d9o (3.6b)
K
e - . - _]; e
d oF ¢ eij t 3 de 6ij (3.7)
dcij = dS].‘j + dccSij (3.8)
d e?j is the elastic increment of deviatoric strain. d €= d eeii
is the elastic increment of volumetric strain. do = % d oii is the

increment of hydrostatic stress and d Sij is the increment of devia-
toric stress.

An important assumption in the calculation of the plastic incre-
ment of strain d egj, following the theory of plasticity, is the exis-
tence of a yield function. In the present model, the arguments of the
yield function, F, are the state of stress, o.., and a parameter, k,

1]
that reflects the history of plastic deformation:

F( cij,k) = 0. (3.9)

In the space of stresses o.., the yield function may be repre-

iJ
sented by a surface. Forplastic deformation to occur the material must
be subjected to a state of stress that lies on this surface, F = 0
(yield surface). If the state of stress is in the interior of the
convex region bounded by the surface, F < 0, only elastic deformation
occurs. The value of the parameter k changes so that the state of

stress satisfies F = 0 during plastic deformation. Thus, the region
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defined by F > 0 is the set of states of stress which cannot be ob-
tained without further plastic deformation. In this way, an increment
of stress doij can be considered as loading, if it is directed towards
the exterior of the convex region bounded by the yield surface, as
unloading if it is directed towards the interior of the convex region

and as neutral loading, if it is tangent to the yield surface:

1) Loading:
_ 9 F
F (oij'k) = 0 and aoij doij >0 (3.10a)
2) Unloading:
- 3 F
F (o555k) = 0 and 35 do;5 < 0 (3.10b)
3) Neutral Loading:
= 3 F
F (01J,k) = 0 and 'a_'cij dcij = O (B.IOC)

(It is assumed that F is continuously differentiable.) Plastic deform-
ation occurs only during loading. The yield function F is assumed iso-
tropic, involving invariants of the stress tensor 05je namely, the
hydrostatic stress (mean normal stress)

ii

wfr—

and the shearing stress intensity

. 1/2
**[? i3 Sij ] =




5 2 2 1/2
/175—[(01 - 02) + (02 - 03) + (03 - 01) ]

(Sij =055 -(Jﬁij. 0y Oy, O are the principal values of the stress

tensor.) It is taken of the general form

F (o, T, k) =f (o, T) -k (3.11)

Upon loading, F (o

1j,k) =0and F (Oij +d oij’ k +dk) = 0.
Thus,
9 oF af
dF = =— d +——=— dk = do -dk=20
1] ij 3k Boij i)
therefore
of
dk = — ;s (3.12)
aoij 1)

The plastic increment of strain d 91? is written as

deig = deig + % depéij (3.13)

with d eig (the plastic increment of deviatoric strain) and d e (the

plastic increment of volumetric strain) given by:

= )
i i > {3.14a)

13
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deP = dkg (3.14b)

1
H
with H and B, in general, functions of o and T .

In order to describe the physical meaning of H and B8, it is
convenient to define the intensity of the increment of inelastic

shear distortion d P as:

D _ p p 1/2

de {2 d ey d €L ] (3.15)
Usirg Eq. (3.14a), it may be seen that, during loading, H

must be positive, since d k > 0, T > 0 and d egj is taken in the same

direction as Sij‘ It is easily obtained that
2

[u] Skg Skg

H 4 T2

2 .% Skq Sgge 1t follows that

2
P _ d k
kg 9 Ckg * [Hl

Since T

and

[2d eEQ d eE2 ]1/2 - dk .

Finally,
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deP = 5 - (3.16)

Since d k may be understood as an increment of loading and deP is the
intensity of the increment of plastic shear distortion, H may be
interpreted as a plastic shear modulus.

Combining equations (3.14b) and (3.16), it follows that
deP = gdeP. (3.17)

Thus B may be understood as the ratio of inelastic volumetric deforma-
tion to inelastic shear deformation. It is referred to as the inelas-
tic dilatancy factor. Since d e? > 0, B<0 means inelastic contraction
and 3> 0 means inelastic dilatancy.

The yield function F must exhibit what is sometimes referred
to as pressure sensitivity of inelastic behavior. Thus, it is assumed
that as magnitude of the hydrostatic stress |g| increases, the shearing
stress intensity for which inelastic behavior may occur, also increases.
A typical yield surface in o- T space is shown in Fig. 3.1. The para-
meter k is also known as the hardening parameter and, if the state of
stress is on the yield surface, it is related to o and T through the
equation F = 0 (Eq. (3.11)).

Thus, H and B may be taken as functions of (o,T), (o, k) or
(T, k) equivalently. However, since ultimate strength of the material

is obtained when k reaches a limit value, it is more convenient to take




f(e,T)-k=0

Q|

Fig. 3.1. Typical yield surface in o - T space

H and 8 as functions of (T,k) or (o,k) rather than (oc,T) since k
provides a measure of the proximity of the state of the material to

the ultimate strength.

3.3 Constitutive Equations

Eqs. (3.14) may be rewritten as:

P . P
d 2y Cijkl d Oy (3.18)

16
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The plastic compliance tensor C ?jkz is obtained using Eq. (3.12):
dk=;a;g:—i—dokz]
-g—sf; a5, + A do}
=L’:—j S_k'% d S * aaofdg}
Since
Skg T T kg T 9%
and

d Sk2 = dok2 - do 6kz

it is seen that

1%
[+34
—h
(%]
x
=
@
—h
w
=
=
o
Q
X‘O’
=
+
@
-

However,

a)! 58}
-+
N‘ w
~
3=
o
Q
=3
=
>
"
o

and
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= 1
do= 3 d %q 6kQ .
therefore,
3f S 3 f
_ ke 1 S do, ,.
“‘{—’wﬁ '3 3 “} -

It follows from Egs. (3.13) and (3.14) that:

| i N = Rl S
Ciske™ W [2 T3k éij] [aT 7T '3 % GKQJ (3.19)

In generzl, C # cP

up -
ijke keij®

Finally, the incremental constitutive equations corresponding

to loading may be written as

de.. = C

ij ijke ks (3.20)

with

_ e p
Ciske = Cijke * Cijkg -

Again, in general, Cijkl # ckiij'

In the cases of unloading and neutral loading, the compliance tensor

C is equal to the elastic compliance tensor Ci§k1 and the increment

ijka
of strain d eij is given by:




de,. = C.§

i i3ke dokg . (3.21)

3.4 Parameter Estimation

The yield function F has been taken of the general form:

Flo, Ty k) 2f (0, T) -k (3.11)

A simple special case of Eq. (3.11) is:

[{]
(o)

F (o, T, k) = Ao + AT+ Ay - k
Using the following conditions,
1) oy=-[fil 50y = 03 = Oandk =1

2) Oand k = 1

op = 0p = -1.16 {f'cl; a3

3) op= -0.80 |fl] 3 o, =04 0and k =0,
the values of Al’ A2 and A3 may be found. Thus
T
Fo, T, k) = 0.69 -2 + 3.285 -.0667 - k
o Tl T

o
(3.22)

(fé is the strength of the material in uniaxial compression.)

19
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Conditions 1, 2 and 3 represents respectively,

1) ultimate strength in uniaxial compression.

2) wultimate strength in equal biaxial compression. (The
factor 1.16 allows for the increase in strength under combined com-
pressive stresses.)

3) Initial yielding in uniaxial compression.

The parameter k can assume values between O (initial yielding)
and 1 (ultimate strength). Thus, it can be used as an indicator of
the proximity of the yield surface to the material ultimate strength.
A graphical representation of the yield function (3.22) in 0y - 9
space and in o - T space is shown in Figs. 3.2 and 3.3 respectively.

The plastic shear modulus H will be taken to be a function of
the magnitude of the hydrostatic stress |o]| and the hardening parameter
k. As shown in Figs. 3.1 and 3.3, the yield function used in this
study is such that the shearing stress intensity T increases as the
magnitude of the hydrostatic stress |o| increases. Since more inelas-
tic shear deformation is obtained under higher shear loading (higher

T), is follows that H must be a decreasing function of T and hence of

la].
Using Eq. (3.16) and calculating the values of d k and deP from

stress-strain curves measured in uniaxial compression tests, the

values of H shown in Table 3.1 were obtained. Within each interval,

H is assumed to vary as follows:

1

Ho = a+bk
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Fig. 3.2 Yield surfaces in oy - 0, space c
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£
0.8
0.1
e 1 .
| T J
1.0 2.0 Eil
c

Fig. 3.3 Yield surfaces ino-T space
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Table 3.1 Relationship between k and H in uniaxial compression

K H (psi)

0 16,000
0.35 4,870
0.50 2,800
0.70 1,600
1.00 575

The values of a and b may be calculated for each interval yielding

the expressions in Table 3.2.

Table 3.2 Expressions for H as a function of k in
uniaxial compression.

k H (psi)
0<k<0.35 H = 1/(4.081 x 10" % + 6.250 x 107°)
0.35 < k < 0.50 H = 1/(1.012 x 1073k - 1.489 x 10°%)
0.50 < k < 0.70 H = 1/(1.339 x 1073 - 3.125 x 107%)
0.70 < k < 1.00 H = 1/(3.714 x 1073 - 1.975 x 1073)

In uniaxial compression ( oy < 0, o, =05 = 0):

and

22
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- 1
= — ol .

Using the yield function given by Eq. (3.22), it is seen that, beyond

the initial yielding,

2 +3k

101‘ = 5 | f

1
c l

and therefore

l g . _ 2+3k
15

or

15.

In order to generalize the results given in Table 3.2 and obtain
expressions for H valid for any state of stress, the values of H in

uniaxial compression were divided by 15 and multiplied by

2+3k

o
fC

Thus, the expressions for H shown in Table 3.3 were determined.
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Table 3.3 Expressions for H under multiaxial states
of stress (C = (2 + 3 k)/]o /f.]).

k H (psi)

05 kS 0.35 H = ¢/(6.122 x 1073k + 9.375 x 107%)
0.35 5 k £ 0.50 H = C/(1.518 x 1072 - 2.234 x 1073)
0.50 S k  0.70 H = C/(2.009 x 1072 - 4.688 x 1073)
0.70 S k £ 1.0 H = C/(5.571 x 1072 - 2.963 x 10°%)

The inelastic dilatancy factor 8 will be taken to be a function
of the parameter k only. A more elaborate analysis could include the
effect of the hydrostatic stress o in the expressions for 8.

Using Eq. (3.17) and calculating the value of deP and deP from
stress-strain curves measured in uniaxial compression tests, the value
of B shown in Table 3.4 were obtained.

In order to check the accuracy of the expressions for H and 8
shown in Tables 3.2 and 3.4 respectively, the stress-strain curve in
uniaxial compression used to obtain the two parameters was reproduced

and the comparison is shown in Fig. 3.4.
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Table 3.4 Relationship between k and B in uniaxial

compression.
8

0<k=0.135 B = -49.60k + 2.92
0.135 £ k £ 0.219 B = 66.31k - 12.73
0.219 € k = 0.354 B =-14.44k + 4.95
0.354 £ k £ 0,521 B =-3.05k + 0.92
0.521 = k £ 0.615 B= 8.09% - 4.88
0.615 = k = 0.708 B = -9.8% + 6.17
0.708 < k £ 0.792 8 = 15.12k - 11.53
0.792 < k = 0.875 B =-11.81k + 9.79
0.875 £ k 5 1.0 B= 8.32k- 7.82
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CHAPTER 4 !
THE FINITE ELEMENT ANALYSIS OF THE CONCRETE MODEL

4.1 Introduction

The concrete model to be analyzed in this study is shown in
Figure 2.1. The coarse aggregate will be assumed to be elastic up
to ultimate strength since test results in uniaxial compression showed
that this is true to a very good approximation. Inelastic deformation
in the mortar will be taken into account using the constitutive model
described in Chapter 3.

As the model and the loading are symmetric about the two
orthogonal axes, it is necessary to analyze one quadrant only. A
discretization of this quadrant by finite elements is shown in Fig.
4.1. As it may be seen, a six-node element is used to represent the
coarse aggregate and an eight-node element is used to represent the
mortar. '

The objective of this chapter is to describe the linear and

nonlinear finite element analysis of the concrete model.

4.2 Linear Analysis -

This section describes the analysis of the concrete model
assuming both materials (aggregate and mortar) to be isotropic and
elastic. Section 4.3 will describe the nonlinear analysis, i.e., the

analysis accounting for the nonlinear behavior of the mortar.

27




Fig. 4.1

Discretization of the concrete model by

finite elements.
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The linear analysis may be described briefly as follows:
Step 1. Given the elastic properties of the materials, a
relationship between nodal forces and nodal displacements for each

element is found:

where

LIRSV VS S B | i 14T
’5 = [Xl’ Yl’ X5s Y2, s e X Ym ]

i T
:i = [ul, Vis Ups Vou o o oy Uy vm]

The superscript T indicates that the transpose of the superscripted
matrix must be taken. X; and Y} are the forces, in the x and y dir-
ections, respectively, applied at node j of element i. uj and vj
are the displacements, in the x and y directions, respectively, of node
j. m is the number of nodes of the element. ff is the stiffness
matrix of element i.

Step 2. The element stiffness matrix f; and the load vector
lii are modified for the support conditions.

Step 3. A relationship between nodal forces and nodal dis-

placements for the structure is found, i.e., the structure stiffness

matrix is assembled from the element stiffness matrices:

F = K EL




X2

30

T

&)
"

[Xl, Yl’ XZ’ Y2, e ey Xp, Yp]

_ T
Y = rula Vla uza VZ’ LI I | ups vp]

Xj and Yj are the forces, in x and y directions respectively, applied
at node j. p is the number of nodes in the structure. K is the
stiffness matrix of the structure.

Step 4. The system of equations for the displacements is solved
using Gauss elimination. Formally:

_ -1

L= KI° E

Step 5. After the displacements are determined, it is possible
to find strains and, therefore, stresses at any point in the structure.

In each element, some points also used in the calculation of the element

stiffness matrix (integration points) are chosen.

4,2.1 Derivation of the Element Stiffness Matrix. The finite

elements used in this study are called isoparametric. The same inter-
polation functions used to relate the coordinates of any point, within
the element, to the coordinates of the element nodes are also used to
relate the displacements of any point, within the element, to the

displacements of the element nodes. Thus:

m
X = I N, x. (4.1a)
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m
y = 321 Nj ¥y (4.1b)
m
m
= 3 N. . 4.
v & iV (4.2b)

x, y are the coordinates of any point within the element. X3 ¥; are
the coordinates of node j. u, v, are the displacements of any point
within the element. uj, vj are the displacements of node j. Nj is
the interpolation function corresponding to node j.

An interpolation function assumes a value equal to one when
evaluated at its corresponding node and a value equal to zero when
evaluated at any other node. For example, the interpolation functions

used for the eight-node element (see Fig. 4.2) are given by

N1 =-1/4(r +s +1) (1 -5s)(1-r)
Ny = 1/4(r - s - 1) (1 -5) (1 +r)
Ny = 1/4(r +s - 1) (1 +5) (1+7)
Ng=-1/8(r - s + 1) (1 +5) (1-r)
Ng = 1/2(1 - s) (1 +r) (1 -7r)




=
n

=z
n

=
it

r, s being lTocal coordinates as indicated in Fig. 4.2,

172(1 = s} {1 +s) (1 + r)
1/72(1 +s) {1 +r) (1 - r)

1/2(1 +s) (1 - s) (1 -r)

There is a one-to-one correspondence between points in the

square in Fig. 4.2 and the eight-node element shown in Fig. 4.1.

It

is the intarpolation used in Eqs. (4.1) and (4.2) that allows the use

of curved elements such as the ones shown in Fig. 4.1.

?S
7(0,1)

30,0

N
D

6(1,0)

N

ADe
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'("1-”

50,1

2(',")

Fig. 4.2 Local system of coordinates for the eight-node element.

If small displacements are assumed, the strains at any point

in the body are given by

32
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and

= _ai_ + _a._v (4.3)

. N.
L L
j=1 Y j=1 Y J
and
m 3 N, 5 N,
= — _J
Txy jil 3y Y3 Y3 x vj (4.4)

The partial derivatives of the interpolation functions with

respect to x and y may be calculated from

3 N. 9 N. 3 X 3 N. 3
°h Y

= —d + i °7
3 r 3 X 3r 3 y =3ar
N, N, . 3

3 i 3 j 3 X N d N 3y
3 5 3 X 23S Yy 35S

In matrix form
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Al is known as the Jacobian Matrix and can be derived as a function of

-
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r and s using Eq. (4.1).

e

Thus, given the coordinates r and s of a point in local coordinates,

a N,
3 X

The relationship between the strains at any point in the body

w3

J=1

nm~™3

J=1

3 N,

i
35 ]

Q|
"l =

N
S

L7

Y.

J

]

(4.5)

and the nodal displacements may be written, in matrix form, as:

34

3N,
and ?T}l can be found, for the corresponding point in the body:




where

2m

T
[Exs Eys ny]

[aN1 . aN2 .

5 X 3 X

. 3 N1 . 9 N2
3y d Yy

3 N1 d N1 3 N2 3 N2 L 3 N

d3Y 3ax 3y 93X

T
s Uma Vm]
2 M
3 x °
. 3 Nm
3y
9 N

35

(4.7)

After the strains, the stresses can be calculated (assuming a plane

state of stress with 0, =Ty, ©
g = D €
~s ~ aAv
where
_ T
c = [O’x, Gy, Txy]

= () as

yZ

(4.8)
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The principle of minimum potential energy yields the stiff-

ness matrix of an element (for example, see Ref. 6):

k" = 78" D B dv (4.9)
~ element
volume

The integration in Eq. (4.9) is conveniently carried out
numerically. In this analysis, Gaussian integration is employed.
Nine integration points have been used for the eight-node elements
and seven integrations points for the six-node elements. The inte-
gration points in the eight-node element in local coordinates are
shown in Fig. 4.3,

The matrix multiplication in Eq. (4.9) may be organized as

follows:
Calling,
- -
3 N.
. 0
9 X
3 N,
= 0 —
I N, 3 N,
_J _
L Y I x|
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Fig. 4.3
in local coordinates.
so that,
B o= B> Bps v - - 5 Byl
T _ T 7 T-T
Box BB B

and using Eq. (4.9):

Integration points for the eight-node element
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, -
T T T
B, 08 B DB 8128,
T T T
B, DB B,08, B0 8,
i ‘Z‘ ) ) .
=L W 4.10
~ g1t . . ( )
T T
gmggl EmPH\B,Z .?m,gaB.m
L -

q being the number of integration points. The weight of integration
point % is denoted by W, .
The matrix in Eq. (4.10) is symmetric, ifll is symmetric as

in Eq. (4.8).

4.2.2 Modification of the Element Stiffness Matrix for

Support Conditions. The stiffness matrix derived above relates the

forces at the nodes of an element to the corresponding displacements.
These displacements are the degrees of freedom. If a displacement

is prescribed, it is not considered a degree of freedom and the cor-
responding column and row in the stiffness matrix ﬁj are deleted after
the column multiplied by the prescribed vaiue is subtracted from the
load vector. Thus, for example, if the displacement in the y-direction
of node 1, Vi is prescribed equal to Vl’ the element stiffness matrix

will be modified as follows:




yi
m
L

k1,1 k1,2 1,3 K14 - k1, 2m Uy
kp1 %2,2 k2,3 %50 - k2 om vy
k3,1 K3,2 %3,3 k3.4 - k3 2m uy
Kg,1 Ka,2 %4,3 kg4 - kg om Vo
Kom, 1%2m, 2%2m, 3K2m,4 * - kzm,ZmJ A
A K ; Ky o |
il (*1,1 1,3 1,4 ° - 1,2m
Vil [*3,1 k3,3 K34, -+ K3,om
Vil ka,1 ka3 Kag K, 2m
k2m’2v£ f2m,1 k2m,3 k2m,4 k2m,2m_

v

L ™

In this way, a support is introduced at node 1 in the y-

direction and the force Y

i

1 becomes the reaction at this support.
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Another modification in the load vector and element stiff-
ness matrix must be introduced in this analysis to take into account
the fact that some degrees of freedom may be the same. For example,
if the load is applied to the specimen shown in Fig. 2.1 using rigid
platens, it is reasonable to assume equal displacements for all nodes
located along the contact edge of the specimen in the direction of
the applied load. Thus, all degrees of freedom can be condensed in a
single one since they are all the same. The process of condensation
may be described by the following example. Suppose that the degrees
of freedom vy and v, are the same and it is desired to condense them
in a single degree of freedom, say, vi- To accomplish this it is
necessary to make the following modifications in the element stiff-
ness matrix and load vector. The column and row corresponding to the
degree of freedom Vo must be added to the column and row corresponding
to the degree of freedom Vi The column and row corresponding to the

degree of freedom vy is them deleted. Thus,

- 1,1 (ky,2%1,8)  kp3 S !
}| h |
ol (kg atka 1) (kg p%2kp g) (kp a¥ky 5) o o (K ootk o) Y

X5 k3,1 (k3 2*¥3,4) X33 = o k3o us!

i N
k5.1 (kg o*kg 4) kg 3 « e - Kg oo u3

6,1 (ke,2*kg,4) kg3 -+ - kg om V3

. .

om,1 (ko #%am, @ %om, 3 Kam, 2m m
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Note that the remaining stiffrness matrix is still symmetric, if the
original matrix is symmetric.

Since, sometimes, there are some degrees of freedom which are
the same but, in addition belong to different elements, a trick is
used to overcome the difficulty. A one-degree-of=<freedom node number
is created in the program for each set of degrees of freedom to be
condensed. An element node number corresponds to a structure node
number. For example, the node number 1 of element 28, see Fig. 4.1,
corresponds to node number 87 in the structure. Thus, in the program,
the sets of degrees of freedom to be condensed are forced to correspond
to the created node number and, therefore, during the process of
assembly and salution of the system of equations, only one degree of
freedom will be processed.

4.2.3 Assembly and Solution of the Structure System of

Equations. The assembly and solutijon of the structure system of

equations is a straightforward process. A detailed description of

this process is not of interest in this study and therefore only a

brief presentation will be given here. (See Ref. 7 for more information).
The Frontal Solution Method is used. In this method the

assembly and Gauss elimination are performed at the same time, whereas

in the usual solution method the stiffness matrix for the structure

is first assembled and then Gauss elimination is carried out.
1f, as elements are processed one after the other, a node

appears for the last time, the degrees of freedom associated with

the node may be eliminated and the corresponding equations are removed




42

and saved. After the last element has been processed, back-substi-
tution yields the nodal displacements. Note that in the Frontal
Solution Method it is element numbering that is crucial and not node
numbering. The method is known to be more efficient than the more
common band solvers, if elements with midside nodes are used as in
the present analysis (see Ref. 7).

4.2.4 Calculation of Stresses and Strains in the Body. As

explained in section 4.2.1, if the nodal displacements of an element
are known, the strains and stresses at any point within the element

can be calculated using Eqs. (4.7) and (4.8) respectively. In this

study, the calculations are carried out at the integration points.

If the stresses at all integration points in the body do not
exceed the material elastic limits, the linear analysis is sufficient
to obtain the behavior of the concrete model. On the other hand, if,
at any integration point, the stresses exceed the material elastic
Timits,a nonlinear analysis must be performed. This will be discussed
in Section 4.3.

4.2.5 Accuracy Test of the Linear Finite Element Analysis.

The problem depicted in Fig. 4.4 was considered in order to check the
accuracy of the linear finite element analysis. It involves a circular
inclusion in a matrix subjected to uniform tension in one direction.

An exact solution of this problem in the case in which tension is
applied at an infinite distance away from the inclusion (a = =) is
available in the literature (see Refs. 8, 9). Details of the derivation

of the exact solution may be found in these references. The
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Fig. 4.4 A test in the elastic analysis.

displacements of points A and B were obtained from the exact solu-
tion and then using the linear finite element analysis. As it is
impossible to apply the tension at an infinite distance away from the
inclusion, several finite element analyses were performed for increas-
ing values of o {see Fig. 4.5). The results for two different values
of Poisson's ratio for the inclusion are shown in Table 4.1. Good
agreement between the results of the finite element analysis and the

exact solution may be observed as the value of a is increased. Thus,
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Fig. 45 Finite element meshes used in the test analyses.




Table 4.1 Comparison between results of the finite element
analysis and the exact solution
E, =8.4x 10% psi E, = 6 psi v, =
1 = 8.4 x 107 psi E2 = 4,7 x 107 psi v, = 0.20
v, = 0.06 EXACT SOL.
a 0.67 1.67 3.33 o
ulin) | 2.23x 1073 | 238 x 1073 | 2.46 x 1003 | 2.51 x 1073
va(in) |-0.18 x 1004 | -0.98 x 1004 | -1.41 x 107 | -1.75 x 107%
v, = 0.15 EXACT SOL.
N 0.67 1.67 3.33 m
up(in) - 2.40 x 1073 | 2.47 x 1073 | 2.52 x 1073
vg(in) --- 2.73x 1074 | -3.16 x 1074 | -3.45 x 1072

the finite element meshes shown in Fig. 4.5 yield reasonably accurate

results.

4.3 Nonlinear Analysis

a one-degree-of-freedom structure.
structure.

The inelastic behavior of this structure is shown in Fig. 4.6,

The nonlinear analysis is better understood by considering
Let P be the load applied to the

Also let u be the degree of freedom associated with P.

Sup-

pose that for some value of the load P the corresponding displacement

u is known.

It is desired to find the increment of displacement Au
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Fig. 4.6 P vs. u diagram for a one-degree-of-freedom structure

associated with the increment of load AP. If, for any given displace-
ment, it is possible to find the corresponding load for structural
equilibrium and if the initial elastic stiffness K is known, the
problem may be solved iteratively as follows:

Step 1. Assuming that the structure is elastic, the

increment of displacement Au1 associated with AP is found:

[
o

Buy X
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Step 2. For the increment of displacement Aul, the
corresponding increment of load AP1 for equilibrium is found:

Step 3. The residual increment of load (AP - APl) is applied,
assuming again elastic behavior, and the increment of displacement

Au2 is calculated:

(AP-API)
b2 = —Tx —

Now repeat steps 2 and 3 until convergence is obtained and the value
of Au = _g Aui is determined, n being the number of iterations.

T;;]procedure described above is usually referred to as the
"Censtant Stiffness Method". It is used in a similar way in the non-
Tinear analysis of the concrete model shown in Fig. 2.1. Suppose that
for some load P on the model the nodal displacements U as well as the
stresses and strains ¢ and g at all integration points are known. It
is desired to find the increments of nodal displacements Qg and the
increments of stresses and strains Ao and Ae corresponding to some
increment of load Af. The problem is solved as follows:

Step 1. Assuming that the structure is elastic, a linear
analysis (as described in Section 4.2) is performed and the increments
of nodal displacements Ayl associated with the load increment Af are

found:
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Step 2. For each element and at each integration point:
lbinggyl and Eq. (4.7) 951 is found. The increments of stresses
using the elastic material properties (lee=‘g Agys see Eq. (4.8)) are
calculated. Using the constitutive equations developed in Chapter 3,
the increments of stresses Agl corresponding to le are evaluated. The
residual increments of stresses (égle - le) are determined and then
for each element, the corresponding nodal residual forces are calcu-
lated. Applying the residual forces, another linear analysis is
performed and the increments of nodal displacements 992 are found.

Repeat steps 1 and 2 until a convergence criterion is satisfied.

The increments of nodal displacements, the increments of

strains and the increments of stresses are given by:

n

av =z sl
i=]1
n

Ae = L A€,

~ i=1 ~
n

Ao = L 5O,

S~ i='| Ml

n being the number of iterations.

4.3.1 Implementation of the Constitutive Model in the Non-

linear Analysis. As it may be concluded from the above description of

the nonlinear analysis, a very important part is the calculation of

the increments of the stresses on the material from the increments




of the strains. The constitutive model described in Chapter 3 will
be used here to accomplish this task.

It is evident from the description of the constitutive model
that the behavior of the material depends on the loading path. The
state of the material is defined by the stresses g (a plane state of
stress is considered so that O33 = Tp3 = T3y = 0):

_ T
g = o1 992 Tyl (4.11)

and the hardening parameter k. gqp» Opp are the normal stresses and

T2 is the shear stress. The hydrostatic stress is

1
c = §-(011 + 022) (4.12)

and the shearing stress intensity is given by

1/2
_ /I 2 2 2 2
T ="5 |(o11 - 092)" * o *op t61p (4.13)
The assumed yield function F is
F (g, k) = f (o,T) - k. (4.14)

For the state of stress g, F (g, k) £ 0. The implementation

of the constitutive model in the program can be described as follows:
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First, elastic increments of stress are calculated from the

increments of strain Ae using Eq. (4.8):

P

T
e _ e e e
AO - Aoll ’ A022, Ale} .

Second, the yield function F is calculated at the state of

stress g. If F {c, k) < 0, the behavior is elastic if the increments

of stress /,sge is not large enough for g + g\qe to be beyond the yield

surface, i.e., if F ( g + 4%, k) < 0. Thus

(4.15)

£e being the elastic compliance matrix (symmetric, 3 x 3) and

:
g = legpsepp 1]

T
e .
93 = (A'Eila Aizzg AY12]
(811" €9y are the normal strains and Y12 is the shear strain.) The
matrix f is given by

[ 1

.




(E and v are Young's modulus and Poisson's ratio respectively.)
The normal strain and the increment of normal strain in the out-of-

plane direction are given by

f33 7 1% (8 ) (4.16a)
2€qq = i:%’ (aey; + dey,) (4.16b)

Eq. (4.15) may be rewritten as

Aoe = e Ae (4.17)

~o ~

where Qf = [(;,f"‘]'1 is the elastic rigidity matrix (symmetric, 3 x 3).
In the case that F (g + ége, k) > 0, the increments of stress
must be divided into two parts: one to bring the state of stress to
the yield surface (elastic behavior as desc¢cribed before) and the
remainder resulting in elastoplastic behavior as described below.

If F(g, k) = 0 (the state of stress is on the yield surface),

the following cases are distinguished:

1) Loading:
2 F| T,
3 Aog™> 0
g' P~

with
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5 F _ |3F aF ofF
90 30717 30y 3Ty,

The constitutive equations are

>
m
1
—~~
(@]
+
(3]
o
e
>
Q

(4.18)

I

where Ao [Aoll, LCPOR AT12]

are the increments of stress that correspond to Ac. EP is the two-
dimensional plastic compliance matrix (3x3) and E? is, again, the
elastic compliance matrix. In order to calculate the plastic incre-
ment of normal strain in the out-of-plane direction, Aeg3, the neces-
sary entries in the three-dimensional plastic compliance matrix will

also be computed. Thus, with the notation

1 [, 1
Ai = — -+ — B, i=1,2,3
H 27 3
_ (4.19a)
A'l = - s i=4
H i 2T
3 f Si 1 35 f
Bi sl — + — —, i=1,2,3
3T 27T 3 a T
(4.19b)
Bi = 2 |— —| , i=4
a T 2T
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(51 = 011 'U’ SZ = 022 = Oy 53 = 033 ‘G, 54 = le; H and B are the
plastic shear modulus and the inelastic dilatancy factor respectively
as defined in Chapter 3.) The entries of the three-dimensional matrix

CP may be written as (see Eq. (3.19)):

P . C i =
cij Ai Bj, i, § 1, 2, 3, 4. (4.20)
This is a 4 x 4 matrix. Since Ao33 is zero, the third column may be
deleted. Keeping rows 1, 2, 4 yields the two-dimensional plastic
compliance matrix in Eq. (4.18). Row 3 is used in order to calculate
the plastic increment of strain in the out-of-plane direction Ae§3.

Eq. (4.18) may be rewritten as

a0 = D e (4.21)
ep _ rp© pa-1 . s s .

where 2' = [Q_ + E.] . is the elastoplastic rigidity matrix. In

this study, the matrix QP is not necessarily symmetric and, therefore,

the rigidity matrix‘ggp is also, in general not symmetric.

The increment of the hardening parameter k is obtained as

:
Ak = [?——F] Ac. (4.22)

3 g ~
~

2) Unloading:
T

[ji-E] Ace < 0.
3 4 ~




The behavior is elastic (Eq. (4.17)).

" 3) Neutral loading:

T
9 F e _
5] & -

Again, elastic behavior is obtained (Eq. (4.17)).

4.3.2 Calculation of Residual Forces from Residual Stresses.

After the residual stresses are calculated at each integration point,
the corresponding nodal residual forces for each element may be found

using the equation:

‘ Since
k! =s8"DBav, ac = Bay and
~ vol ~
b = D As
AF? =I§_TQ§dv Ui =f§Tp_§AU1 dv
-~ vol -~ vol ~
4 i T
1 AF" = [ B Ag dv (4.23)
‘ vol

where Af’ is the vector of nodal residual forces for element i and

Ao represents the residual stresses in the element. The integration
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is carried out numerically:

i _ 19 T
AFT = w B AoR (4.28)
P Q=1 ~ P~

Ac, 1s the vector of residual stresses at integration point ¢.

~1L

4.3.3 Convergence Criterion. In this study the convergence

test is based on a relative error estimate calculated from the nodal
displacements and increments of nodal displacements of the structure.
The ratio of the square root of thé sum of the squares of the incre-
ments of the nodal displacements to the square root of the sum of the
squares of the nodal displacements in an iteration is obtained. If
it is less than a specified tolerance then iterations are terminated.
The value of the tolerance is chosen so that displacements are deter-
mined accurately and residual nodal forces are also relatively small
at termination of the iterations. The tolerance value used in this
analysis is 10'8. After termination of the iterations, the remaining
vector of residual nodal forces is added to the next load increment.

4.3.4 Failure Criteria. As discussed in Chapter 3, the

hardening parameter k assumes values between 0 and 1. k = 0 indicates
the initiation of material inelasticity and k = 1 means that the
ultimate strength of the material is reached. In this analysis failure
may occur locally and globally. If, at an integration point, ultimate
strength is reached the material is assumed to fail locally at that
point and the stresses are consjdered as residual ones. This does

not necessarily mean a global failure of the specimen. It may still
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carry load. However, if equilibrium cannot be satisfied after redis-
tribution of stresses, as evidenced by failure to achieve convergence,

the specimen is assumed to collapse.




CHAPTER 5

MORTAR-AGGREGATE INTERFACE MODELING

5.1 Introduction

The interface between the coarse aggregate and the mortar
is, in general, the weakest link in concrete. This is most clearly
seen in uniaxial compression. Under this state of stress, failure of
the concrete specimen generally starts with the development of bond
cracks at the interface which propagate through the mortar. Uniaxial
compression tests have shown less bond cracks in high strength con-
crete than in normal strength concrete (see Chapter 2). However,
tests of the concrete model specimens in uniaxial compression exhibit
configuration of cracks paraliel to the direction of the applied load
and following a path along the interface.

Thus it may be seen that it is very important to include in the
analysis a model to reproduce the behavior of the interface between
the coarse aggregate and the mortar. In this study this is done by
means of the special interface element shown in Fig. 5.1. The internal
nodes 1, 3 and 5 are attached to an element that represents the aggre-
gate while the external nodes 2, 4 and 6 are attached to an element
that represents the mortar (see Fig. 4.1). The global coordinates x,
y are the same for each pair of adjacent nodes and the element thick-

ness t is set equal to a very small number.

57




58

Fig. 5.1 Interface element in global and local systems
of coordinates.

5.2 Derivation of the Stiffness Matrix
of the Interface Element

The interface element is also an isoparametric element and
the derivation of its stiffness matrix follows a procedure similar
to that used in the derivation of the stiffness matrices of the other
elements. The derivation can be summarized as follows:

Step 1. The displacements at any point along the edges of the

element are expressed in terms of the nodal displacements:

Ujp = Npup * Npug * Nyug (5.1a)
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G

vipn T Npvp ¥ Npvg + Ny g (5.1b)
W = Now, + Nou, + N (5.1c)
out 1 Y2 2 Yg 3 Ys .
G -y + N, v, +N, v (5.1d)
Vout 1Y2 A 3 Y% y

where the subscripts in and out indicate displacements of the inside
and of the outside edge of the interface element respectively and
the superscript G identifies displacement components in the global

system of coordinates x, y. The interpolation functions are
= 1 -

N, = 5 T (r ~ 1)

Ny = (1-r) (1 +7r)

3 7 e

=z
\

Eas. (5.1) may be organized in matrix form as follows:

e =

£ -y, (5.2)

where,

.
W = [uG G

G
in® Vin® Yout® Vout

land




e

’lin [ul’ Vls uzs Vz:
N = [ml’ EZ, !13]
with
o
) 0
ﬂj =
0
0

.
< e Ugs v6]

0 0 0 |

N.o0 0

0 N.o 0

0 0 Ny |
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Step 2. The calculated displacements are transformed to a local

system of coordinates that is tangent and normal to the interface at

the particular point under consideration.

appropriated rotation matrix:

- L - -
uin cos 8
vg -sin 6

in -
L
uout 0
L
LY out ] L 0

or,

sin © 0 0
cos 8 0 0
0 cos & sin ©
0 -sin 6 c¢o0s 8

This is done using an

in

n

out

v
|V out ]
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(5.3)

8 is the angle between the x axis and the tangent to the interface

at the point in study. sin 6 and cos 6 can be calculated at any point

on the interface as follows:
cos B = i§—§19~31

3 y/ar)
A

sin 6

with
- 2 2
o = [ (ax/ar)° + (3y/3r)“]
since
3
X = £ N; x
i=1 !
3
y = N, y.
js1 1V

it is seen that

1/2
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3 N,
1
5 r Yi

X; and Y5 being the global coordinates of the pair of nodes i (e.g.,
pair 1 is the pair of nodes, 1, 2, etc.).
Step 3. With the displacements in local coordinates, the
strains and stresses are found in the tangent and normal directions.
The strains are equal to the difference between corresponding

displacements divided by the element thickness.

1
£ 0 — 0 *-w uIT
t

Or,
g = I L’.L (5.4)

€ and Y are the strains in the normal and in the tangent directions
respectively. Having calculated the strains, the stresses can be

obtained as
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or,
g = DeE. (5.5)

o and T are the stresses in the normal and tangent directions res-
pectively and E and G are the extensional and the shear moduli
of elasticity respectively at the point under consideration. In the
present analysis large values for E and G are used in order to keep
the corresponding displacements of nodes in each pair practically the
same. Values of E and G cannot be arbitrarily large, if il1-
conditioned calculations are to be avoided. An appropriate set of
values of E, G, and t may be obtained by trial and error. In this ’
study E and G are initially set equal to 1.0 x 106 psi at all inter-
face points and the element thickness t is set equal to 1.0 x 10'10 in.
Step 5. The element stiffness matrix is calculated.
With eqs. (5.2), (5.3) and (5.4) a relationship between

strains and nodal displacements may be derived as follows:

o

or
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(5.6)

__g,c

with

and the element stiffness matrix is given by

K= /B DBy
element
volume

Again the integration is carried out numerically using three
Gaussian integration points. Thus, partitioning

: I

rsl, 82, 831
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o
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eh pg'  @H pg? @) o8
3 T T
k= zwt @) pg @y @ pg e
T T T
g o' %) pg® 8% pgd
where the summation is over the number of integration points and W,
is the weight of integration point i.
5.3 Bond Strength Between the Mortar
and the Coarse Aggregate
The interface may be submitted to a combination of shear and .
tensile normal stresses or to a combination of shear and compressive
stresses. Figure 5.2 shows the bond failure envelope in the two
regions. The envelope is defined by the three parameters Ops C and ¢,
which are respectively the bond tensile strength, the cohesion and l
the angle of internal friction. These parameters have been measured
in bond tests between coarse aggregate and normal-strength mortar.
The following range of results have been reported for this type of
material (see Refs. 10, 11 and 12):
op = between 200 psi and 400 psi
¢ = between 300 psi and 600 psi
¢ = between 32 degrees and 39 degrees
!
b
]
‘ \ D
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*
SHEAR- TENSION SHEAR ~-COMPRESSION
FAILURE FAILURE

Fig. 5.2 Bond failure envelope in the c - T space.

No information is available in the literature for the bond
strength between coarse aggregate and high-strength mortar; thus,
in this study, different sets of parameters will be used to examine
the importance of the bond strength in the performance of the concrete

model.

- -
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5.4 Implementation of the Bond Properties
in the Analysis

As described in Sec. 5.2, the stiffness matrix of the inter-
face element is derived using initially large values for the exten-
sional modulus E and the shear modulus G at all interface points.
Thus, each pair of nodes has the corresponding nodal displacements
practically equal and, therefore, complete attachment (stick condition)
between the coarse aggregate and the mortar is achieved.

After the calculation of the nodal displacements, the strains
and stresses in the tangent and normal directions at any point within
the interface element can be computed. If the combination of normal
and shear stresses at any point on the interface exceeds the maximum
allowed by the failure envelope in Fig. 5.2, it is assumed that the
bond is damaged at that point and its properties are no longer the
same. The three integration points used in the derivation of the
element stiffness matrix are also used here as the locations to check
if the bond has failed. The procedure can be summarized as follows:

Step 1. After calculating the nodal displacements, the
strains and stresses at each integration point of each interface
element are found in the tangent and normal directions using Egs.
(5.6) and (5.5).

Step 2. The calculated stresses are checked to see if they
exceed the maximum allowed by the failure envelope in Fig. 5.2. Here
two different modes of bond failure may occur: shear-tension or shear-

compression failure. If a shear-tension failure is reached at an




- veva

integration point, the values of E and G at that point are set equal
to zero and the normal and the tangent stresses become residual
stresses. If a shear-compression failure is achieved, only the value
of the shear modulus G is set equal to zero at that integration point
and only the tangent stress becomes residual stress.
Step 3. Nodal residual forces from the
residual stresses (see Section 4.3.2) and the stiffness matrices of
the interface elements in which the bond was damaged are obtained,
now using the new values of G and E for each integration point.
Step 4. A new analysis is performed applying the residual
forces and using the new stiffness matrices for the damaged interface
elements. If no more integration points on the surface reach the
failure envelope the analysis is complete. Otherwise, iterations

are continued until no further bond damage occurs.

[P — —_—
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CHAPTER 6

ANALYTICAL RESULTS AND COMPARISON

6.1 Introduction

The presentation of the analytical results in this chapter
js divided into two parts. The results shown in the first part were
obtained using all the assumptions and parameters given in the
preceding chapters (with the exception of the bond properties between
the mortar and the aggregate which are discussed in the next section).
The second part of this chapter shows some modifications introduced
in the analysis in order to obtain better agreement with the experi-
mental results.

6.2 Estimation of the Bond Properties
of the Interface

As shown in Section 5.3, the bond properties of the interface
can be defined by three parameters, Ops € and @, which are, respect-
vely, the bond tensile strength, the cohesion and the angle of
internal friction. Since there appears to be no quantitative infor-
mation on the properties of the bond between high-strength mortar
and aggregates, the values used in this analysis were estimated by
calibration with experimental results.

Figure 6.1 shows a comparison between analytical and experi-
mental results using several different sets of bond parameters in
the case of uniaxial compression. Note the slope discontinuity in
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the analytical stress-strain curves corresponding to oy = 300 psi,

¢ = 500 psi, and Oy = 1060 psi, ¢ = 1000 psi, due to failure in the
interface elements. The value of the tensile bond strength, Cys Was
assumed to be equal to the tensile strength of the mortar (about 1000
psi) and the cohesion value was then adjusted in order to get the
same level of strength of the experimental results. A value of 2000
psi1 was then assigned to the cohesion and the angle of internal
friction was kept equal to 35 degrees. These values were used in all
other load cases.

A map of bond damage is shown in Fig. 6.2 for the case of
uniaxial compression with normal-strength concrete bond properties.
A dashed line means that a shear-compression failure has occurred
at the nearby integration point of the interface element and a con-
tinuous Tine means that a shear-tension failure has occurred in that
region. This stage of loading corresponds to the points of slope
discontinuity shown in the stress-strain curves in Fig. 6.1.

6.3 Analysis Prediction of the Concrete
Model Behavior

The concrete model behavior, as predicted by the finite element
analysis, is presented in this section. The elastic and plastic
material properties used in the analysis were obtained from uniaxial
compressive tests on cylindrical specimens as described in the prev-
ious chapters.

Four different load cases are studied using the same type of

mortar and coarse aggregate: wuniaxial compression (02/01 = 0.0),
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equal biaxial compression (02/01 = 1.0), and two other biaxial com-
pression cases (02/01 = 0.50 and 02/01 = 0.20). The load is applied
on the specimen in such a way that all the edge nodes have the same
displacement in the direction of the applied Toad and it is assumed
that there is no edge restraint in the direction perpendicular to the
direction of the applied load.

6.3.1 Elastic Distributicn of Stresses. A graphical repre-

sentation of the principal stresses at the integration points for
the four load cases is shown in Figs. 6.3 through 6.10. Each stress
is represented by an arrow. The direction of the arrow coincides with
the direction of the principal stress and tﬁe arrow length is pro-
portional to the magnitude of the principal stress. A compressive
principal stress is represented by an arrow pointing towards the cor-
responding integration point whereas a tensile principal stress is
represented by an arrow pointing in the opposite direction. Two
figures (with different scales) are used to represent the two principal
stresses for each load case. The first figure contains the smaller
(in absolute value) principal stress and the second figure contains
the larger one. The externally applied stress, 99s is equal to
1,000 psi. The absolute value of the stresses at the integration
noints without arrows in Fig. 6.3 is less than 38 psi.

Note that tensile stresses have occurred only in the case of
uniaxial compression. With the exception of the case of equal biaxial
compression (02/01 = 1.0), a slight concentration of stresses may be

observed in the regions between two circles of aggregate and the
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Fig. 6.3 Graphical representation of the smaller principal stress at
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Fig. 6.5 Graphical representation of the smaller principal stress at
the integration points (02/01 = 0.20).
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the integration points (0 Py = 0.20).
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directions of the principal stresses are almost coincident with the
directions of the applied loads. The equal biaxial loading case
shows a more uniform distribution of stress in magnitude. In this
case the directions of the principal stresses are approximately
normal and tangential to the interface which means that, practically,
the interface is subjected to no shear stresses.

6.3.2 Evolution of the Damage in the Concrete Model During

Loading. As described in Chapter 3, the hardening parameter k was
chosen to vary between 0 and 1. These values correspond, respec-
tively, to the initiation of inelasticity and ultimate strength of
the material. Thus, the magnitude of k may be used as an indicator
of the proximity to failure or the degree of damage at a point in
the specimen. Figures 6.11 through 6.22 show a representation of the
magnitude of k at the mortar eloments integration points for the
four load cases and at diffei..t load stages. A circle of radius
proportional to the value of k is used in the representation. For
the values of k less than 0.125 the circles are not shown.

With the exception of the equal biaxial Toad case (02/01 =
1.0), it may be observed that the inelasticity of the material starts
and develops with more intensity in the regions between two circles
of aggregate in the direction perpendicular to 0q- Note that in the
case of uniaxial compression no integration point reaches failure at
ultimate strength of the specimen. This agrees with the fact that
the bond strength is the most important factor influencing the

ultimate strength of the specimen in this load case. The case of

82
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Fig. 6.11 Degree of damage in the specimen at 65 percent of the
analytical ultimate strength (02/01 = 0.0).
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Fig. 6.12 Degree of damage in the specimen at 80 percent of the

analytical ultimate strength (02/01= 0.0).
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Fig. 6.15 Degree of damage in the specimen at 78 percent of the
analytical ultimate strength (<='2/C71 = 0.20).
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Fig. 6.17 Degree of damage in the specimen at 48 percent of the
analytical ultimate strength (02/01 = 0.50).
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Fig. 6.18 Degree of damage in the specimen at 74 percent of the
analytical ultimate strength (02/01 = 0.50).
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Fig. 6.20 Degree of damage in the specimen at 52 percent of the

analytical ultimate strength (02/01 = 1.0).
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equal biaxial compression shows a more uniform distribution of
plasticity throughout the specimen.

6.3.3 Comparison between Analytical and Experimental Results.

Figures 6.23 through 6.26 show the stress-strain curves for the four
load cases obtained from experiments and the analysis. The average
strains in the directions 1 and 2 were obtained by dividing the dis-
placements cf nodes 10 and 77 respectively (Fig. 4.1) by the dis-
tance from these nodes to node 1 (1.875 in.). Nodes 10 and 77 cor-
respond to the points at which average strains were obtained in the
experiments.

For all the load cases, the a-alytical results show less
stiffness than the experimental ones even at low levels of load
for which the specimen is still elastic.

Bond failure for the load cases 02/01 = 0.0 and 02/01 = 0.20
was observed in the analysis just prior to failure of the specimen.
For the load cases 02/01 = 0.50 and 02/01 = 1.0 the interface
remained undamaged up to failure of the specimen and the analytical
results showed higher ultimate -trength and ultimate strains than the
experimental ones. The analytical results in Figs. 6.23 to 6.26 were
obtained using the plastic shear modulus H as a function of the
hardening parameter k and the hydrostatic stress o (see Table 3.3).

Figures 6.27 through 6.30 show the analytical results obtained
with the plastic shear modulus H as a function of the hardening para-
meter k only. With this change in the plastic properties of the

mortar, the load case 02/01 = (.20 did not show a bond failure at the
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interface and its analytical ultimate strength was increased. The
Toad case 02/01 = 0.50 showed a slight decrease in strength and
less plastic deformation may be observed in all load cases.

The difference in stiffness between the analytical and the
experimental results is attributed to the boundary conditidns at the
edges of the specimen in the experiments. The next part of this
chapter will present analytical results for specimens with edge
restraints imposed in the direction perpendicular to the direction

of the applied load.

6.4 Analysis of Constrained Specimens

The guestion as to what the boundary conditions are at the
edges of the specimen is not easily answered because no information
is available about the degree and distribution ot restraint provided
by the loading device. If one tries, at what would be considered as
extreme boundary conditions, to set equal to zero the edge displace- ‘
ments in the direction perpendicular to the direction of the applied
load, a singularity in the displacement field is obtained at the
corner. From one side the corner must have the same displacement as
the other edge nodes and from the other side this same displacement -
is set equal to zero. If the displacements of the corner node are
not prescribed equal to zero, a concentration of strains and therefore
stresses is obtained in the elements in the neighborhood of the
corner and premature failure of the specimen is predicted.
Any reasonable distribution of edge restraint is best justi-

fied if good agreement with the experimental results is obtained.




= .

105

The concrete model was analyzed with rectangular elements attached
to the boundary mortar elements in an attempt to simulate the
loading device (Fig. 6.31). The elastic properties of these ele-
ments were set equal to the elastic properties of typical steel

(E = 2.90 x 10’

psi, v = 0.30) and the dimension of the element in
the direction of the applied load was set equal to the dimension of
the loading device (0.75 in.). No relative displacement was

allowed between the mortar and the steel elements and the load was
applied at the edge nodes of the steel elements. The displacements
of the edge nodes of the steel elements in the direction perpendicu-
Tar to the direction of the applied load were set equal to zero.

The stress-strain curves obtained with these boundary con-
ditions and the stress-strain curves obtained with no edge restraint
of the concrete model are compared with the experimental results
in Figs. 6.32 through 6.35. In uniaxial compression, the edge con-
dition has negligible influence on the analytical results. The two
curves are almost identical. In the other three load cases, the
experimental results lie in between the two sets of analytical results.
Obviously, a certain degree of relative displacement has occurred
between the specimen and the loading device in the experiment.

Another way to impose edge restraint on the specimen was
examined using the three-node bar element shown in Fig. 6.36. Such
elements were attached to the boundary mortar elements in order to
decrease the edge displacements in the direction perpendicular to

the direction of the applied load. The stiffness matrix of this
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Fig. 6.36 Three-node bar element used in the constrained analysis
of the specimen.

element was obtained numerically using three Gaussian integration
points. The element axial stiffness was assumed to vary linearly
along the element length. Thus, during the integration of the element
stiffness matrix, each integration point had a different value of the
stiffness assigned. In order to avoid the high concentration of ’
strains and stresses in the corner elements, this axial stiffness was
distributed linearly from zero at the corner node (node 100 in Fig.
4.1) to a maximum value at the middle of a side of the specimen

(nodes 13 and 94 in Fig. 4.1). This maximum value of axial stiff-
ness was calibrated with the experimental results in equal biaxial
compression in order to have the same initial elastic stiffness in

the stress-strain curve. A value equal to 4.2 x 107lb/in was obtained,
then used for all the load cases. The analytical results obtained

under these assumptions regarding the boundary conditions are compared
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to the experimental results in Figs. 6.37 through 6.40. A better
agreement in stiffness and ultimate strength may be observed.

A representation of the magnitude of the hardening parameter
k at different levels of load for the four load cases is shown in
Figs. 6.41 through 6.52 for the above described boundary conditions.
With the exception of the uniaxial load case, the inelasticity starts
and develops with more intensity at the corner of the specimen. The
failure of the specimen is seen to be premature because of the edge

conditions.

6.5 Analysis Shortcomings

The linear finite element analysis of the concrete model is
expected to predict stiffer behavior than the exact solution due to
the discretization. The error, however, is not large for the dis-
cretization used in this analysis and the results are accurate encugh
as demonstrated in Section 4.2.5. This observation establishes beyond
any doubt that the specimens were constrained by the heads of the
loading device in the experiments.

The accuracy of the nonlinear analysis is mainly influenced
by the accuracy of the constitutive model used for themortar. The
model has proved to be accurate for normal-strength concrete under
biaxial states of stress (Ref. 1) but has not yet been tested for
high-strength mortar under multiaxial states of stress since no

experimental data are available.
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elements attached and the experimental results (02/01=1.0).
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Fig. 6.41 Degree of damage in the specimen at 65 percent of the
analytical ultimate strength with the edge stiffening
elements attached (02/01 = 0.0).
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Fig. 6.42 Degree of damage in the specimen at 80 percent of the
analytical ultimate strength with the edge stiffening
elements attached (oz/c1 = 0.0).
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Fig. 6.43 Degree of damage in the specimen at the analytical
ultimate strength with the edge stiffening elements
attached (02/01 = 0.0).
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Fig. 6.44 Degree of damage in the specimen at 58 percent of the
analytical ultimate strength with the edge stiffening

elements attached (oz/o1 = 0.20).
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Fig. 6.45 Degree of damage in the specimen at 79 percent of the

analytical ultimate strength with the edge stiffening
elements attached (02/01 = 0.20).
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Fig. 6.46 Degree of damage in the specimen at the analytical
ultimate strength with the edge stiffening elements
attached (oz/c1 = 0,20).
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Fig. 6.47 Degree of damage in the specimen at 53 percent of the

analytical ultimate strength with the edge stiffening
elements attached (02/01 = 0.50).
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elements attached (02/01 = 0.50).

Fig. 6.48 Degree of damage in the specimen at 79 percent of the
analytical ultimate strength with the edge stiffening
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Fig. 6.49 Degree of damage in the specimen at the analytical
ultimate strength with the edge stiffening elements
attached (02/01 = 0.50).
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Fig. 6.50 Degree of damage in the specimen at 58 percent of the

analytical ultimate strength with the edge stiffening
elements attached (02/01 = 1.0).
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Fig. 6.51 Degree of damage in the specimen at 74 percent of the

analytical ultimate strength with the edge stiffening
elements attached (02/01 = 1,0).
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Fig. 6.52 Degree of damage in the specimen at the analytical

ultimate strength with the edge stiffening elements
attached (02/01 = 1,0).
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The bond properties used for the mortar-aggregate interface
modeling may not be accurate and experimental studies of the bond
between the coarse aggregate and high-strength mortar are yet to be
performed. An increase in the number of interface points used to
check for bond failure may also yield more accurate modeling of the
interface.

The differences in stiffners between the analytical and the
experimental results in uniaxial compression cannot be attributed
to the restraints imposed on the edge of the specimen only. Other
factors may be responsible for the disagreement such as difference
between the elastic properties of the component materials as obtained
from tests on cylindrical specimens and their actual values in the
concrete model as well as possible eccentricities in the Toading

device.




J Ry U G - S ——

CHAPTER 7

SUMMARY AND CONCLUSIONS

7.1 Summary

This present work describes a finite element analysis of a
high-strength concrete model under short-term monotonic biaxial
| compressive loading. The concrete model consists of a square mortar
plate with nine coarse aggregate circular inclusions (Fig. 2.1).

The analysis takes into account the nonlinear behavior of
the mortar using a constitutive model proposed in Ref. 1. The
significance of the bond between the coarse aggregate and the mortar

is also studied using an interface element developed in this work.

The analytical results are then compared with experimental ones.

7.2 Conclusions

The following conclusions may be drawn from this work:

1. The strength of the bond between the coarse aggregate
and the mortar appears to be the most significant factor influencing
the strength of the concrete model in uniaxial compression.

2. Except for low values of the stress ratio 02/01 (e.q.,
0,/0 = 0.20), the analysis predicts that the bond between the
! coarse aggregate and the mortar remains intact up to ultimate strength
of the concrete and it is failure in the mortar matrix that leads to

failure of the model.
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3. Mild stress concentrations were observed in all load
cases. Although significant stress concentrations certainly appear
around aggregates in high-strength concrete, this phenomenon,
apparently, is not captured in the concrete model (circular aggre-
gates).

4. The damage in the concrete starts and develops most
conspicuously in the regions between two aggregates in the direction
perpendicular to the direction of application of the largest stress.

5. The boundary conditions at the edges of the specimen
have negligible influence on the strength and stiffness of the con-
crete model subjected to uniaxial compression.

6. The boundary conditions at the edges of the specimen
most significantly affect the strength and stiffness of the concrete

model in biaxial compression.
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